Comparing Deterministic and Stochastic Methods in Geospatial Analysis of Groundwater Fluoride Concentration

Author:

Brindha K.1ORCID,Taie Semiromi Majid2,Boumaiza Lamine3,Mukherjee Subham4ORCID

Affiliation:

1. Hydrogeology Group, Institute of Geological Sciences, Department of Earth Sciences, Freie Universität Berlin, 12249 Berlin, Germany

2. Working Group Lowland Hydrology and Water Management, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany

3. Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2T 0A4, Canada

4. Physical Geography, Department of Earth Sciences, Institute of Geographical Sciences, Freie Universität Berlin, 12249 Berlin, Germany

Abstract

Dental and skeletal fluorosis caused by consuming high-fluoride groundwater has been reported over several decades globally. Prediction maps to estimate the fluoride contaminated area rely on interpolation methods. This study presents a comparison of the accuracy of nine spatial interpolation methods in predicting the fluoride in groundwater. Leave-one-out cross-validation (LOOCV), hold-out validation and validation with an independent dataset were used to assess the precision of the interpolation methods. This is the first study on fluoride with a large dataset (N = 13,585) applied at the regional level in India. Our findings showed that the inverse distance weighted (IDW) algorithm outperformed other methods in terms of less discrepancy between measured and predicted fluoride. IDW and local polynomial interpolation (LPI) were the only methods to predict contaminated areas (fluoride > 1.5 mg/L). However, the area estimated by the typical assessment of the percentage of unsuitable samples was much higher (6.1%) compared to that estimated by IDW (0.2%) and LPI (0.2%). LOOCV provided viable results than the other two validation methods. Interpolation methods are accompanied with uncertainty which are regulated by the sample size, sample density, sample distribution, minimum and maximum measured concentrations, smoothing and border effects. Drawing a comparison among variegated interpolation methods capturing a wide range of prediction uncertainty is suggested rather than relying on one method exclusively. The high-fluoride areas identified in this study can be used by the Government in planning remediation actions.

Funder

DAAD: German Academic Exchange Service

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3