Evaluation of Geospatial Interpolation Techniques for Enhancing Spatiotemporal Rainfall Distribution and Filling Data Gaps in Asir Region, Saudi Arabia

Author:

Helmi Ahmed M.1ORCID,Elgamal Mohamed2,Farouk Mohamed I.23ORCID,Abdelhamed Mohamed S.4ORCID,Essawy Bakinam T.5

Affiliation:

1. Irrigation and Hydraulics Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt

2. Civil Engineering Department, College of Engineering, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia

3. Irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt

4. Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK S7N 3H5, Canada

5. Civil and Infrastructure Engineering and Management Department, Nile University, Sheikh Zayed City 12588, Egypt

Abstract

Providing an accurate spatiotemporal distribution of rainfall and filling data gaps are pivotal for effective water resource management. This study focuses on the Asir region in the southwest of Saudi Arabia. Given the limited accuracy of satellite data in this arid/mountain-dominated study area, geospatial interpolation has emerged as a viable alternative approach for filling terrestrial records data gaps. Furthermore, the irregularity in rain gauge data and the yearly spatial variation in data gaps hinder the creation of a coherent distribution pattern. To address this, the Centered Root Mean Square Error (CRMSE) is employed as a criterion to select the most appropriate geospatial interpolation technique among 51 evaluated methods for maximum and total yearly precipitation data. This study produced gap-free maps of total and maximum yearly precipitation from 1966 to 2013. Beyond 2013, it is recommended to utilize ordinary Kriging with a J-Bessel semivariogram and simple Kriging with a K-Bessel semivariogram to estimate the spatial distribution of maximum and total yearly rainfall depth, respectively. Additionally, a proposed methodology for allocating additional rain gauges to improve the accuracy of rainfall spatial distribution is introduced based on a cross-validation error (CVE) assessment. Newly proposed gauges in the study area resulted in a significant 21% CVE reduction.

Funder

Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3