Abstract
The parallel processing of the service function chain (SFC) is expected to provide better low-delay service delivery, because it breaks through the bottleneck of traditional serial processing mode in which service delay increases linearly with the SFC length. However, the provision of parallelized SFC (PSFC) is much more difficult due to the unique construction of PSFCs, inevitable parallelization overhead, and delay balancing requirement of PSFC branches; therefore, existing mechanisms for serial SFC cannot be directly applied to PSFC. After a comprehensive review of recent related work, we find that traffic scheduling mechanisms for PSFCs is still lacking. In this paper, a delay-aware traffic scheduling mechanism (DASM) for PSFCs is proposed. DASM first transforms PSFC into several serial SFCs by releasing the upstream VNF constraints so as to handle them independently while keeping their parallel relations. Secondly, DASM realizes delay-aware PSFC traffic scheduling based on the reinforcement learning (RL) method. To the best knowledge of the authors, this is the first attempt to address the PSFC traffic scheduling problem by transforming them into independent serial SFCs. Simulation results show that the proposed DASM outperforms the advanced PSFCs scheduling strategies in terms of delay balance and throughput.
Funder
National Key R&D Program of China
MUST Faculty Research Grants
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献