Dynamic service function chains placement based on parallelized requests in edge computing environment

Author:

Guo ChengJun12,Rezaeipanah Amin3

Affiliation:

1. National Key Laboratory of Science and Technology on Communication University of Electronic Science and Technology of China Chengdu Sichuan China

2. Research Institute of Electronic Science and Technology University of Electronic Science and Technology of China Chengdu Sichuan China

3. Department of Computer Engineering Persian Gulf University Bushehr Iran

Abstract

AbstractThe advent of Network Function Virtualization (NFV) technology brings flexible traffic engineering to edge computing environments. Online services in NFV are chained as Service Function Chains (SFCs), which consist of ordered sequences of Virtual Network Functions (VNFs). The SFC Placement (SFCP) problem is solved under Quality of Service (QoS) requirements and limited resource availability by directing traffic to the required VNFs. However, SFC assembly leads to high latency and network congestion by increasing the count of VNFs, which parallelized SFC can overcome this problem. With parallelizing an SFC request, independent VNFs are activated simultaneously and computational acceleration is realized by reducing the SFC length. Any pair of VNFs that do not conflict with traffic can be activated simultaneously. Most VNFs are deployed on distributed servers for load balancing, which makes SFC parallelization challenging. Meanwhile, the cost of merging/duplicating packets for parallelized SFCs between different servers is not negligible. Hence, in this article, Distributed Parallel Chaining (DPC) is proposed which is an algorithm based on Deep Reinforcement Learning (DRL) approaches. The DPC algorithm solves the SFCP problem to maximize the Long‐Term Expected Cumulative Reward (LTECR). DPC incorporates an Asynchronous Advantage Actor‐Critic (A3C) algorithm as a new approach based on DRL to increase the admission ability of future SFC requests by maximizing LTECR. The evaluation results show the effectiveness of the proposed algorithm from different aspects. Specifically, compared to the best existing approaches, DPC can reduce SFC latency by 8.7%.

Publisher

Wiley

Subject

Electrical and Electronic Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3