Dynamic service function chain placement in mobile computing: An asynchronous advantage actor‐critic based approach

Author:

Jiang Heling12,Xia Hai3,Zare Mansoureh4

Affiliation:

1. Central China Normal University Shenzhen China

2. Information Department GuiZhou University of Finance & Economic Guian China

3. Gui'an New Area Science and Innovation Industry Development Co., Ltd Guian China

4. Department of Computer Engineering, Bushehr Branch Islamic Azad University Bushehr Iran

Abstract

AbstractInternet of Things (IoT) devices are constantly sending data to the cloud. The resource‐rich cloud computing paradigm provides users with significant potential to reduce costs and improve quality of service (QoS). However, the centralized architecture of cloud data centers and thousands of miles away from clients has reduced the efficiency of this paradigm in delay‐sensitive and real‐time applications. In order to get over these restrictions, fog computing was integrated into cloud computing as a new paradigm. Without using the cloud, fog computing can supply the resources needed for IoT devices at the network's edge. Delay is thereby decreased because processing, analysis, and storage are located closer to the clients and the areas where the data is created. In Mobile Edge Computing (MEC) networks, this study sets up an architecture based on Deep Reinforcement Learning (DRL) to deliver online services to end users. We introduce a DRL‐based method named DPPR for Dynamic service function chain (SFC) Placement that uses Parallelized virtual network functions (VNFs) and seeks to optimize the long‐term expected cumulative Reward. Online service provider DPPR can accomplish processing acceleration through parallel VNF sharing. In addition, by extracting the distribution of initialized VNFs, DPPR improves the capacity to handle subsequent requests. The conducted simulations demonstrate the efficacy of the proposed method, so that the average number of accepted requests is improved by about 11.7%.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3