Abstract
Under constant selection, each trait has a fixed fitness, and small mutation rates allow populations to efficiently exploit the optimal trait. Therefore, it is reasonable to expect that mutation rates will evolve downwards. However, we find that this need not be the case, examining several models of mutation. While upwards evolution of the mutation rate has been found with frequency- or time-dependent fitness, we demonstrate its possibility in a much simpler context. This work uses adaptive dynamics to study the evolution of the mutation rate, and the replicator–mutator equation to model trait evolution. Our approach differs from previous studies by considering a wide variety of methods to represent mutation. We use a finite string approach inspired by genetics as well as a model of local mutation on a discretization of the unit intervals, handling mutation beyond the endpoints in three ways. The main contribution of this work is a demonstration that the evolution of the mutation rate can be significantly more complicated than what is usually expected in relatively simple models.
Funder
Bill & Melinda Gates Foundation
NIH COBRE Program
Neukom CompX Faculty Grant
Dartmouth Faculty Startup Fund
Walter & Constance Burke Research Initiation Award
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献