Social Learning and the Exploration-Exploitation Tradeoff

Author:

Mintz Brian1ORCID,Fu Feng1

Affiliation:

1. Department of Mathematics, Dartmouth College, Hanover, NH 03755, USA

Abstract

Cultures around the world show varying levels of conservatism. While maintaining traditional ideas prevents wrong ones from being embraced, it also slows or prevents adaptation to new times. Without exploration there can be no improvement, but often this effort is wasted as it fails to produce better results, making it better to exploit the best known option. This tension is known as the exploration/exploitation issue, and it occurs at the individual and group levels, whenever decisions are made. As such, it is has been investigated across many disciplines. We extend previous work by approximating a continuum of traits under local exploration, employing the method of adaptive dynamics, and studying multiple fitness functions. In this work, we ask how nature would solve the exploration/exploitation issue, by allowing natural selection to operate on an exploration parameter in a variety of contexts, thinking of exploration as mutation in a trait space with a varying fitness function. Specifically, we study how exploration rates evolve by applying adaptive dynamics to the replicator-mutator equation, under two types of fitness functions. For the first, payoffs are accrued from playing a two-player, two-action symmetric game, we consider representatives of all games in this class, including the Prisoner’s Dilemma, Hawk-Dove, and Stag Hunt games, finding exploration rates often evolve downwards, but can also undergo neutral selection as well depending on the games parameters or initial conditions. Second, we study time dependent fitness with a function having a single oscillating peak. By increasing the period, we see a jump in the optimal exploration rate, which then decreases towards zero as the frequency of environmental change increases. These results establish several possible evolutionary scenarios for exploration rates, providing insight into many applications, including why we can see such diversity in rates of cultural change.

Funder

Dartmouth Fellowship

Bill & Melinda Gates Foundation

NIH COBRE Program

Neukom CompX Faculty Grant

Dartmouth Faculty Startup Fund

Walter & Constance Burke Research Initiation Award

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3