Edge Computing Offloading Method Based on Deep Reinforcement Learning for Gas Pipeline Leak Detection

Author:

Wei Dong,Wang Renjun,Xia Changqing,Xia Tianhao,Jin XiORCID,Xu ChiORCID

Abstract

Traditional gas pipeline leak detection methods require task offload decisions in the cloud, which has low real time performance. The emergence of edge computing provides a solution by enabling offload decisions directly at the edge server, improving real-time performance; however, energy is the new bottleneck. Therefore, focusing on the gas transmission pipeline leakage detection scenario in real time, a novel detection algorithm that combines the benefits of both the heuristic algorithm and the advantage actor critic (AAC) algorithm is proposed in this paper. It aims at optimization with the goal of real-time guarantee of pipeline mapping analysis tasks and maximizing the survival time of portable gas leak detectors. Since the computing power of portable detection devices is limited, as they are powered by batteries, the main problem to be solved in this study is how to take into account the node energy overhead while guaranteeing the system performance requirements. By introducing the idea of edge computing and taking the mapping relationship between resource occupation and energy consumption as the starting point, the optimization model is established, with the goal to optimize the total system cost (TSC). This is composed of the node’s transmission energy consumption, local computing energy consumption, and residual electricity weight. In order to minimize TSC, the algorithm uses the AAC network to make task scheduling decisions and judge whether tasks need to be offloaded, and uses heuristic strategies and the Cauchy–Buniakowsky–Schwarz inequality to determine the allocation of communication resources. The experiments show that the proposed algorithm in this paper can meet the real-time requirements of the detector, and achieve lower energy consumption. The proposed algorithm saves approximately 56% of the system energy compared to the Deep Q Network (DQN) algorithm. Compared with the artificial gorilla troops Optimizer (GTO), the black widow optimization algorithm (BWOA), the exploration-enhanced grey wolf optimizer (EEGWO), the African vultures optimization algorithm (AVOA), and the driving training-based optimization (DTBO), it saves 21%, 38%, 30%, 31%, and 44% of energy consumption, respectively. Compared to the fully local computing and fully offloading algorithms, it saves 50% and 30%, respectively. Meanwhile, the task completion rate of this algorithm reaches 96.3%, which is the best real-time performance among these algorithms.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

National Natural Science Foundation of Liaoning province

Youth Innovation Promotion Association CAS

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3