Joint UAV Deployment and Task Offloading in Large-Scale UAV-Assisted MEC: A Multiobjective Evolutionary Algorithm

Author:

Qiu Qijie1ORCID,Li Lingjie2,Xiao Zhijiao1,Feng Yuhong1ORCID,Lin Qiuzhen1,Ming Zhong123

Affiliation:

1. College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China

2. Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518000, China

3. College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, China

Abstract

With the development of digital economy technologies, mobile edge computing (MEC) has emerged as a promising computing paradigm that provides mobile devices with closer edge computing resources. Because of high mobility, unmanned aerial vehicles (UAVs) have been extensively utilized to augment MEC to improve scalability and adaptability. However, with more UAVs or mobile devices, the search space grows exponentially, leading to the curse of dimensionality. This paper focus on the combined challenges of the deployment of UAVs and the task of offloading mobile devices in a large-scale UAV-assisted MEC. Specifically, the joint UAV deployment and task offloading problem is first modeled as a large-scale multiobjective optimization problem with the purpose of minimizing energy consumption while improving user satisfaction. Then, a large-scale UAV deployment and task offloading multiobjective optimization method based on the evolutionary algorithm, called LDOMO, is designed to address the above formulated problem. In LDOMO, a CSO-based evolutionary strategy and a MLP-based evolutionary strategy are proposed to explore solution spaces with different features for accelerating convergence and maintaining the diversity of the population, and two local search optimizers are designed to improve the quality of the solution. Finally, simulation results show that our proposed LDOMO outperforms several representative multiobjective evolutionary algorithms.

Funder

Natural Science Foundation of Guangdong Province

Stable Support Project of Shenzhen

National Natural Science Foundation of China

Shenzhen Science and Technology Foundation

2022 Guangdong Province Undergraduate University Quality Engineering Project

Guangdong Regional Joint Foundation Key Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3