Research on Yaw Stability Control Strategy for Distributed Drive Electric Trucks

Author:

Gao Feng1ORCID,Zhao Fengkui1,Zhang Yong1

Affiliation:

1. College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China

Abstract

With the advancement of vehicle electrification and intelligence, distributed drive electric trucks have emerged as the preferred choice for heavy-duty electric trucks. However, the control of yaw stability remains a significant issue. To tackle this concern, this study introduces a layered control strategy for yaw moment. Specifically, the upper layer utilizes a yaw moment controller based on linear quadratic regulator (LQR) to compute the additional yaw moment required. Additionally, in order to enhance the performance of the yaw moment controller, the weight matrix in LQR is optimized using a hybrid Genetic Algorithm and Particle Swarm Optimization algorithm (GA-PSO). The lower layer consists of a torque distribution layer, which establishes an objective function for minimizing tire utilization rate. Quadratic Programming algorithm is then employed to compute the optimal torque distribution value, thereby improving the vehicle’s stability. Subsequently, the stability control effects of the vehicle are simulated and compared on the Matlab/Simulink Trucksim joint simulation platform using four control strategies: the proposed control strategy, SMC, LQR, and without yaw moment control. These simulations are conducted under two working conditions: serpentine and double lane change. The results demonstrate that the proposed approach reduces the average yaw rate by 14.4%, 19.6%, and 42.15% while optimizing the average sideslip angle by 25.9%, 24.8%, and 52.3% in comparison to the other three control strategies. Consequently, the proposed control strategy significantly enhances the driving stability of the vehicle. Furthermore, the optimized allocation method reduces the average tire utilization rate by 42.6% in contrast to the average allocation method, thereby improving the stability control margin of the vehicle. These findings successfully validate the efficiency of the yaw stability control strategy presented in this article.

Funder

Industrial Proactive and Key Technology Program of Jiangsu Province

Modern Agriculture-Key and General Program of Jiangsu Province

Philosophy and Social Science Program of the Higher Education Institutions of Jiangsu Province

Science and Technology Innovation Foundation for Young Scientists of Nanjing Forestry University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3