Numerical Study on Peak Shaving Performance of Combined Heat and Power Unit Assisted by Heating Storage in Long-Distance Pipelines Scheduled by Particle Swarm Optimization Method

Author:

Ju Haoran12,Wang Yongxue1,Feng Yiwu1,Zheng Lijun1

Affiliation:

1. Heating Research Center, Huadian Electric Power Research Institute, 2 Xiyuan Nine Road, Hangzhou 310030, China

2. College of Energy Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310007, China

Abstract

Thermal energy storage in long-distance heating supply pipelines can improve the peak shaving and frequency regulation capabilities of combined heat and power (CHP) units participating in the power grid. In this study, a one-dimensional numerical model was established to predict the thermal lag in long-distance pipelines at different scale levels. The dynamic response of the temperature at the end of the heating pipeline was considered. For the one-way pipe lengths of 10 km, 15 km and 20 km, the response times of the temperature at the distal end were 2.33 h, 2.94 h and 3.54 h, respectively. The longer the flow period, the further the warming-up time is delayed. An optimization scheduling approach was also created to illustrate the peak shaving capabilities of a CHP unit combined with a long-distance pipeline thermal energy storage component. It was demonstrated that the maximum heating load of the unit increased up to 503.08 MW, and the heating load could be expanded in the range of 17.88 MW to 203.76 MW at the minimum electric load of the unit of 104.08 MW. Finally, the particle swarm optimization method was adopted to guide the operating strategy through a whole day to meet both the electric power and heating power requirements. For the optimized case, the comprehensive energy utilization efficiency and the exergy efficiency increase to 64.4% and 56.73%. The thermal energy storage applications based on long-distance pipelines were simulated quantitively and proved to be effective in promoting the operational flexibility of the CHP unit.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3