Abstract
To integrate more renewable energy into the power grid, large-scale thermal power plants have to extend their operating ranges and participating in deep peak shaving. In order to improve the thermal economy of large-scale thermal power plants participating in deep peak shaving, and to determine the performance of a thermal system under different conditions, a method of modeling for the performance prediction of large-scale thermal power plants in deep peak shaving is proposed. In the algorithm design of the model, a three-layer iterative cycle logic is constructed, and the coupling relationship between the parameters of the thermal system is analyzed from the mechanism level. All of the steam water parameters and the correction values of the flow rate at all levels of the system after the parameter disturbance are obtained. The algorithm can simulate the response of a thermal power plant under load variation and operation parameter variation. Compare the error between the data given by the prediction model and the test, the accuracy of the proposed prediction model is verified. When the unit participates in deep peak shaving, the prediction model is used to analyze the relative deviation of the unit thermal efficiency caused by cycle parameters and energy efficiency of equipment. It provides a date basis for the performance evaluation and multi-parameter coupling optimization. The research results can be used to determine the operation mode and equipment transformation scheme.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献