Abstract
Light pollution caused by poorly directed artificial lighting has increased globally in recent years. Artificial lights visible along marine turtle nesting beaches can disrupt natural brightness cues used by hatchling turtles to orient correctly to the ocean for their offshore migrations. Natural barriers, such as tall dunes and dense vegetation, that block coastal and inland lights from the beach may reduce this disruption. However, coastal areas are often managed toward human values, including the trimming of vegetation to improve ocean views. We used viewshed models to determine how reducing the dune vegetation height (specifically that of seagrape, Cocoloba uvifera) might increase the amount of artificial light from upland buildings that reaches a marine turtle nesting beach in Southeast Florida. We incorporated three data sets (LiDAR data, turtle nest locations, and field surveys of artificial lights) into a geographic information system to create viewsheds of lighting from buildings across 21 vegetation profiles. In 2018, when most seagrape patches had been trimmed to <1.1 m tall, female loggerhead turtles nested in areas with potential for high light exposure based on a cumulative viewshed model. Viewshed models using random (iterative simulations) and nonrandom selections of buildings revealed that untrimmed seagrape heights (mean = 3.1 m) and especially taller vegetation profiles effectively reduced potential lighting exposure from three building heights (upper story, midstory, and ground level). Even the tallest modeled vegetation, however, would fail to block lights from the upper stories of some tall buildings. Results from this study can support management decisions regarding the trimming of beach dune vegetation, any associated changes in the visibility of artificial lighting from the nesting areas, and modifications to existing lighting needed to mitigate light exposure.
Subject
General Earth and Planetary Sciences
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献