Genome-Wide Association Study for Somatic Skeletal Traits in Duroc × (Landrace × Yorkshire) Pigs

Author:

Gao Xin1,Zhou Shenping12,Liu Zhihong1,Ruan Donglin2,Wu Jie2,Quan Jianping2,Zheng Enqin2,Yang Jie2ORCID,Cai Gengyuan2,Wu Zhenfang2,Yang Ming1ORCID

Affiliation:

1. College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China

2. College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China

Abstract

The pig bone weight trait holds significant economic importance in southern China. To expedite the selection of the pig bone weight trait in pig breeding, we conducted molecular genetic research on these specific traits. These traits encompass the bone weight of the scapula (SW), front leg bone weight (including humerus and ulna) (FLBW), hind leg bone weight (including femur and tibia) (HLBW), and spine bone weight (SBW). Up until now, the genetic structure related to these traits has not been thoroughly explored, primarily due to challenges associated with obtaining the phenotype data. In this study, we utilized genome-wide association studies (GWAS) to discern single nucleotide polymorphisms (SNPs) and genes associated with four bone weight traits within a population comprising 571 Duroc × (Landrace × Yorkshire) hybrid pigs (DLY). In the analyses, we employed a mixed linear model, and for the correction of multiple tests, both the false discovery rate and Bonferroni methods were utilized. Following functional annotation, candidate genes were identified based on their proximity to the candidate sites and their association with the bone weight traits. This study represents the inaugural application of GWAS for the identification of SNPs associated with individual bone weight in DLY pigs. Our analysis unveiled 26 SNPs and identified 12 promising candidate genes (OPRM1, SLC44A5, WASHC4, NOPCHAP1, RHOT1, GLP1R, TGFB3, PLCB1, TLR4, KCNJ2, ABCA6, and ABCA9) associated with the four bone weight traits. Furthermore, our findings on the genetic mechanisms influencing pig bone weight offer valuable insights as a reference for the genetic enhancement of pig bone traits.

Funder

Guangdong Provincial Key R&D Program

National Natural Science Foundation of China

Guangdong Plan Introduction of Innovative and Entrepreneurship Research Team Program

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3