Convolutional Neural Network Model for Variety Classification and Seed Quality Assessment of Winter Rapeseed

Author:

Rybacki Piotr1ORCID,Niemann Janetta2ORCID,Bahcevandziev Kiril3ORCID,Durczak Karol4ORCID

Affiliation:

1. Department of Agronomy, Faculty of Agronomy, Horticulture and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland

2. Department of Genetics and Plant Breeding, Faculty of Agronomy, Horticulture and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland

3. Agricultural College of Coimbra (ESAC/IPC), Research Centre for Natural Resources, Environment and Society (CERNAS), 3045-601 Coimbra, Portugal

4. Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-637 Poznań, Poland

Abstract

The main objective of this study is to develop an automatic classification model for winter rapeseed varieties, to assess seed maturity and damage based on seed colour using a convolutional neural network (CNN). A CNN with a fixed architecture was built, consisting of an alternating arrangement of five classes Conv2D, MaxPooling2D and Dropout, for which a computational algorithm was developed in the Python 3.9 programming language, creating six models depending on the type of input data. Seeds of three winter rapeseed varieties were used for the research. Each imaged sample was 20.000 g. For each variety, 125 weight groups of 20 samples were prepared, with the weight of damaged or immature seeds increasing by 0.161 g. Each of the 20 samples in each weight group was marked by a different seed distribution. The accuracy of the models’ validation ranged from 80.20 to 85.60%, with an average of 82.50%. Higher accuracy was obtained when classifying mature seed varieties (average of 84.24%) than when classifying the degree of maturity (average of 80.76%). It can be stated that classifying such fine seeds as rapeseed seeds is a complex process, creating major problems and constraints, as there is a distinct distribution of seeds belonging to the same weight groups, which causes the CNN model to treat them as different.

Funder

Polish Ministry of Science

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3