Path Planning for Multi-UAV Formation Rendezvous Based on Distributed Cooperative Particle Swarm Optimization

Author:

Shao Zhuang,Yan FeiORCID,Zhou Zhou,Zhu Xiaoping

Abstract

This paper studies the problem of generating cooperative feasible paths for formation rendezvous of unmanned aerial vehicles (UAVs). Cooperative path-planning for multi-UAV formation rendezvous is mostly a complicated multi-objective optimization problem with many coupled constraints. In order to satisfy the kinematic constraints, i.e., the maximum curvature constraint and the requirement of continuous curvature of the UAV path, the Pythagorean hodograph (PH) curve is adopted as the parameterized path because of its curvature continuity and rational intrinsic properties. Inspired by the co-evolutionary theory, a distributed cooperative particle swarm optimization (DCPSO) algorithm with an elite keeping strategy is proposed to generate a flyable and safe path for each UAV. This proposed algorithm can meet the kinematic constraints of UAVs and the cooperation requirements among UAVs. Meanwhile, the optimal or sub-optimal paths can be obtained. Finally, numerical simulations in 2-D and 3-D environments are conducted to demonstrate the feasibility and stability of the proposed algorithm. Simulation results show that the paths generated by the proposed DCPSO can not only meet the kinematic constraints of UAVs and safety requirements, but also achieve the simultaneous arrival and collision avoidance between UAVs for formation rendezvous. Compared with the cooperative co-evolutionary genetic algorithm (CCGA), the proposed DCPSO has better stability and a higher searching success rate.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3