Influence of the Thermal Insulation Type and Thickness on the Structure Mechanical Response Under Fire Conditions

Author:

Kubicka KatarzynaORCID,Pawlak Urszula,Radoń Urszula

Abstract

The concept of fire safety covers an extremely vast scope of issues. To ensure an adequate fire safety level, it is necessary to combine research and actions in several fields, such as the mathematical, physical, or numerical modelling of a fire phenomenon. Another problem is to design different types of fire protection, including alarm systems, sprinkler systems, and also roads and evacuation systems, in a manner that ensures maximum safety for the building’s users. A vital issue is the analysis of the static-strength response of the structure under fire conditions. This study, concerned with such analyses, is limited to steel truss structures. In technical approvals, manufacturers of fire-proofing materials do not account for the character of the performance of individual structural members. The components in compression need thicker insulation than those in tension. This phenomenon is related to the fact that under fire conditions, the flexural buckling coefficient in compressed members is abruptly reduced with an increase in temperature. In turn, this increase in temperature leads to a fast reduction in resistance. In addition, members in tension have much higher resistance than those in compression in the basic design situation, i.e., at the instant of t = 0 min. Consequently, even a considerable decrease in the resistance of tension members is not as dangerous as that of compression members. Therefore, due to the nature of the performance of individual elements, fire-proofing insulation of every steel structure should be computationally verified. Additionally, in this paper, the influence of the type of fire insulation on the mechanical response of the structure was investigated. Calculations were carried out for different types of sprayed-on insulation, and also for contour and box insulation panels. The graphs show the behaviour of the elastic modulus, the yield point, and the resistance of the elements in the successive minutes of the fire for the different methods of fire protection used. The best results were obtained for vermiculite and gypsum spray.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

1. Tests on intumescent paints for fire protection of existing steel structures

2. Designing of Steel Structures According to Eurocode 3. Fire Safety of Steel Structures;Biegus,2013

3. Fire Resistance of Steel Structures;Note,1995

4. Why did the WTC towers collapse in New York?;Rakowski;Eng. Constr.,2003

5. A theory for the collapse of the World Trade Center

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3