Effects of Deposition Temperature and Working Pressure on the Thermal and Nanomechanical Performances of Stoichiometric Cu3N: An Adaptable Material for Photovoltaic Applications

Author:

Rodríguez-Tapiador M. I.12ORCID,Jiménez-Suárez A.2ORCID,Lama A.3ORCID,Gordillo N.456ORCID,Asensi J. M.78ORCID,del Rosario G.9,Merino J.9,Bertomeu J.78ORCID,Agarwal A.3ORCID,Fernández S.1ORCID

Affiliation:

1. Departamento de Energía, CIEMAT, Av. Complutense 40, 28040 Madrid, Spain

2. Area de Ciencia e Ingeniería de Materiales, Universidad Rey Juan Carlos, Tulipán, s/n, 28933 Móstoles, Spain

3. Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA

4. Centro de Microanálisis de Materiales (CMAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain

5. Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain

6. Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain

7. Departament de Física Aplicada, Universitat de Barcelona, 08027 Barcelona, Spain

8. Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08007 Barcelona, Spain

9. Centro de Apoyo Tecnológico (CAT), Universidad Rey Juan Carlos, Tulipán, s/n, 28939 Móstoles, Spain

Abstract

The pursuit of efficient, profitable, and ecofriendly materials has defined solar cell research from its inception to today. Some materials, such as copper nitride (Cu3N), show great promise for promoting sustainable solar technologies. This study employed reactive radio-frequency magnetron sputtering using a pure nitrogen environment to fabricate quality Cu3N thin films to evaluate how both temperature and gas working pressure affect their solar absorption capabilities. Several characterization techniques, including X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), Raman spectroscopy, scanning electron microscopy (SEM), nanoindentation, and photothermal deflection spectroscopy (PDS), were used to determine the main properties of the thin films. The results indicated that, at room temperature, it is possible to obtain a material that is close to stoichiometric Cu3N material (Cu/N ratio ≈ 3) with (100) preferred orientation, which was lost as the substrate temperature increases, demonstrating a clear influence of this parameter on the film structure attributed to nitrogen re-emission at higher temperatures. Raman microscopy confirmed the formation of Cu-N bonds within the 628–637 cm−1 range. In addition, the temperature and the working pressure significantly also influence the film hardness and the grain size, affecting the elastic modulus. Finally, the optical properties revealed suitable properties at lower temperatures, including bandgap values, refractive index, and Urbach energy. These findings underscore the potential of Cu3N thin films in solar energy due to their advantageous properties and resilience against defects. This research paves the way for future advancements in efficient and sustainable solar technologies.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference52 articles.

1. McEvoy, A., Castaner, L., and Markvart, T. (2012). Solar Cells: Materials, Manufacture and Operation, Academic Press.

2. Effect of Light on Selenium;Smith;Nature,1873

3. On the Fritts selenium cells and batteries;Fritts;J. Frankl. Inst.,1885

4. The photoelectric effect: Reconstructing the story for the physics classroom;Klassen;Sci. Educ.,2011

5. Photoelectric properties of ionically bombarded silicon;Kingsbury;Bell Syst. Tech. J.,1952

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3