Mechanistic Insight into Degradation of Cetirizine under UV/Chlorine Treatment: Experimental and Quantum Chemical Studies

Author:

Zhu Boyi,Cheng Fangyuan,Zhong Wenjing,Qu Jiao,Zhang Ya-nan,Yu Hongbin

Abstract

UV/chlorine treatment is an efficient technology for removing organic pollutants in wastewater. Nevertheless, degradation of antihistamines in the UV/chlorine system, especially the underlying reaction mechanism, is not yet clear. In this study, the degradation of cetirizine (CTZ), a representative antihistamine, under UV/chlorine treatment was investigated. The results showed that CTZ could undergo fast degradation in the UV/chlorine system with an observed reaction rate constant (kobs) of (0.19 ± 0.01) min−1, which showed a first-increase and then-decrease trend with its initial concentration increased. The degradation of CTZ during the UV/chlorine treatment was attributed to direct UV irradiation (38.7%), HO• (35.3%), Cl• (7.3%), and ClO• (17.1%). The kobs of CTZ decreased with the increase in pH and the increase in concentrations of a representative dissolved organic matter, Suwannee River natural organic matter (SRNOM), due to their negative effects on the concentrations of reactive species generated in the UV/chlorine system. The detailed reaction pathways of HO•, ClO•, and Cl• with CTZ were revealed using quantum chemical calculation. This study provided significant insights into the efficient degradation and the underlying mechanism for the removal of CTZ in the UV/chlorine system.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Jilin Province Science and Technology Development Projects

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3