LDAP: Lightweight Dynamic Auto-Reconfigurable Protocol in an IoT-Enabled WSN for Wide-Area Remote Monitoring

Author:

Rahman Gazi M. E.ORCID,Wahid Khan A.ORCID

Abstract

IoT (Internet of Things)-based remote monitoring and controlling applications are increasing in dimensions and domains day by day. Sensor-based remote monitoring using a Wireless Sensor Network (WSN) becomes challenging for applications when both temporal and spatial data from widely spread sources are acquired in real time. In applications such as environmental, agricultural, and water quality monitoring, the data sources are geographically distributed, and have little or no cellular connectivity. These applications require long-distance wireless or satellite connections for IoT connectivity. Present WSNs are better suited for densely populated applications and require a large number of sensor nodes and base stations for wider coverage but at the cost of added complexity in routing and network organization. As a result, real time data acquisition using an IoT connected WSN is a challenge in terms of coverage, network lifetime, and wireless connectivity. This paper proposes a lightweight, dynamic, and auto-reconfigurable communication protocol (LDAP) for Wide-Area Remote Monitoring (WARM) applications. It has a mobile data sink for wider WSN coverage, and auto-reconfiguration capability to cope with the dynamic network topology required for device mobility. The WSN coverage and lifetime are further improved by using a Long-Range (LoRa) wireless interface. We evaluated the performance of the proposed LDAP in the field in terms of the data delivery rate, Received Signal Strength (RSS), and Signal to Noise Ratio (SNR). All experiments were conducted in a field trial for a water quality monitoring application as a case study. We have used both static and mobile data sinks with static sensor nodes in an IoT-connected environment. The experimental results show a significant reduction (up to 80%) of the number of data sinks while using the proposed LDAP. We also evaluated the energy consumption to determine the lifetime of the WSN using the LDAP algorithm.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3