Multi-Temporal Unmanned Aerial Vehicle Remote Sensing for Vegetable Mapping Using an Attention-Based Recurrent Convolutional Neural Network

Author:

Feng Quanlong,Yang Jianyu,Liu Yiming,Ou CongORCID,Zhu Dehai,Niu Bowen,Liu Jiantao,Li Baoguo

Abstract

Vegetable mapping from remote sensing imagery is important for precision agricultural activities such as automated pesticide spraying. Multi-temporal unmanned aerial vehicle (UAV) data has the merits of both very high spatial resolution and useful phenological information, which shows great potential for accurate vegetable classification, especially under complex and fragmented agricultural landscapes. In this study, an attention-based recurrent convolutional neural network (ARCNN) has been proposed for accurate vegetable mapping from multi-temporal UAV red-green-blue (RGB) imagery. The proposed model firstly utilizes a multi-scale deformable CNN to learn and extract rich spatial features from UAV data. Afterwards, the extracted features are fed into an attention-based recurrent neural network (RNN), from which the sequential dependency between multi-temporal features could be established. Finally, the aggregated spatial-temporal features are used to predict the vegetable category. Experimental results show that the proposed ARCNN yields a high performance with an overall accuracy of 92.80%. When compared with mono-temporal classification, the incorporation of multi-temporal UAV imagery could significantly boost the accuracy by 24.49% on average, which justifies the hypothesis that the low spectral resolution of RGB imagery could be compensated by the inclusion of multi-temporal observations. In addition, the attention-based RNN in this study outperforms other feature fusion methods such as feature-stacking. The deformable convolution operation also yields higher classification accuracy than that of a standard convolution unit. Results demonstrate that the ARCNN could provide an effective way for extracting and aggregating discriminative spatial-temporal features for vegetable mapping from multi-temporal UAV RGB imagery.

Funder

China Postdoctoral Science Foundation

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3