Abstract
Metal–organic framework (MOF) materials can be used as precursors to prepare non-precious metal catalysts (NPMCs) for oxygen reduction reaction (ORR). Herein, we prepared a novel MOF material (denoted as Co-bpdc) and then combined it with multi-walled carbon nanotubes (MWCNTs) to form Co-bpdc/MWCNTs composites. After calcination, the cobalt ions from Co-bpdc were converted into Co nanoparticles, which were distributed in the graphite carbon layers and MWCNTs to form Co-bpdc/MWCNTs. The prepared catalysts were characterized by TEM (Transmission electron microscopy), XRD (X-ray diffraction), XPS (X-ray photoelectron spectroscopy), BET (Brunauer–Emmett–Teller), and Raman spectroscopy. The electrocatalytic activity was measured by using rotating disk electrode (RDE) voltammetry. The catalysts showed higher ORR catalytic activity than the commercial Pt/C catalyst in alkaline solution. Co-bpdc/MWCNTs-100 showed the highest ORR catalytic activity, with an initial reduction potential and half-wave potential reaching 0.99 V and 0.92 V, respectively. The prepared catalysts also showed superior stability and followed the 4-electron pathway ORR process in alkaline solution.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献