Mechanism of Organic Solar Cell Performance Degradation upon Thermal Annealing of MoOx
Author:
Affiliation:
1. Flinders Institute for Nanoscale Science and Technology, Flinders University, Adelaide, SA 5042, Australia
2. Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
Funder
Australian Research Council
Government of the People's Republic of China
Publisher
American Chemical Society (ACS)
Subject
Electrical and Electronic Engineering,Materials Chemistry,Electrochemistry,Energy Engineering and Power Technology,Chemical Engineering (miscellaneous)
Link
https://pubs.acs.org/doi/pdf/10.1021/acsaem.9b01635
Reference61 articles.
1. High efficient inverted polymer solar cells with different annealing treatment
2. MoO3 Thickness, Thermal Annealing and Solvent Annealing Effects on Inverted and Direct Polymer Photovoltaic Solar Cells
3. Optimisation of the sol–gel derived ZnO buffer layer for inverted structure bulk heterojunction organic solar cells using a low band gap polymer
4. New Molecular Donors with Dithienopyrrole as the Electron-Donating Group for Efficient Small-Molecule Organic Solar Cells
Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Thermal-Induced Performance Decay of the State-of-the-Art Polymer: Non-Fullerene Solar Cells and the Method of Suppression;Molecules;2023-09-28
2. Powering the Future: A Critical Review of Research Progress in Enhancing Stability of High‐Efficiency Organic Solar Cells;Advanced Functional Materials;2023-08-21
3. Improved Hole Injection in Hybrid Light‐Emitting Transistors Incorporating Lithium and Copper(II) Poly(Styrene Sulfonate);Advanced Materials Interfaces;2023-07-23
4. Research Progress of Thermal Failure Mechanism and Ternary Blending to Improve Thermal Stability of Organic Solar Cells;Acta Chimica Sinica;2023
5. 18.73% efficient and stable inverted organic photovoltaics featuring a hybrid hole-extraction layer;Materials Horizons;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3