Abstract
The COVID-19 pandemic has had an enormous impact on the public transport sector. After the start of the pandemic, passenger demand dropped significantly for public transport services. In addition, social distancing measures have resulted in introducing pandemic-imposed capacity limitations to public transport vehicles. Consequently, public transport operators should adjust their planning to minimize the impact of the COVID-19 pandemic. This study introduces a mixed-integer quadratic program that sets the optimal frequencies of public transport lines and sublines in order to conform with the pandemic-imposed capacity. The focus is on cases where the public transport demand is high, but the crowding levels inside public transport vehicles should remain below the pandemic-imposed capacities. Of particular interest are public transport lines with skewed demand profiles that can benefit from the introduction of short-turning sublines that serve the high-demand line segments. The frequency setting model is tested on a network containing two high-demand bus lines in the Twente region in the Netherlands, and it demonstrates that the revenue losses due to social distancing can be reduced when implementing short-turning service patterns.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献