Abstract
Multistability, i.e., the coexistence of several attractors for a given set of system parameters, is one of the most important phenomena occurring in dynamical systems. We consider it in the velocity dynamics of a Brownian particle, driven by thermal fluctuations and moving in a biased periodic potential. In doing so, we focus on the impact of ergodicity—A concept which lies at the core of statistical mechanics. The latter implies that a single trajectory of the system is representative for the whole ensemble and, as a consequence, the initial conditions of the dynamics are fully forgotten. The ergodicity of the deterministic counterpart is strongly broken, and we discuss how the velocity multistability depends on the starting position and velocity of the particle. While for non-zero temperatures the ergodicity is, in principle, restored, in the low temperature regime the velocity dynamics is still affected by initial conditions due to weak ergodicity breaking. For moderate and high temperatures, the multistability is robust with respect to the choice of the starting position and velocity of the particle.
Subject
General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献