Paradoxical nature of negative mobility in the weak dissipation regime

Author:

Wiśniewski Mateusz1ORCID,Spiechowicz Jakub1ORCID

Affiliation:

1. Institute of Physics, University of Silesia in Katowice , 41-500 Chorzów, Poland

Abstract

We reinvestigate a paradigmatic model of nonequilibrium statistical physics consisting of an inertial Brownian particle in a symmetric periodic potential subjected to both a time-periodic force and a static bias. In doing so, we focus on the negative mobility phenomenon in which the average velocity of the particle is opposite to the constant force acting on it. Surprisingly, we find that in the weak dissipation regime, thermal fluctuations induce negative mobility much more frequently than it happens if dissipation is stronger. In particular, for the very first time, we report a parameter set in which thermal noise causes this effect in the nonlinear response regime. Moreover, we show that the coexistence of deterministic negative mobility and chaos is routinely encountered when approaching the overdamped limit in which chaos does not emerge rather than near the Hamiltonian regime of which chaos is one of the hallmarks. On the other hand, at non-zero temperature, the negative mobility in the weak dissipation regime is typically affected by weak ergodicity breaking. Our findings can be corroborated experimentally in a multitude of physical realizations, including, e.g., Josephson junctions and cold atoms dwelling in optical lattices.

Funder

National Science Centre

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiple current reversals in driven inertial coupled Brownian particles under rough symmetric periodic potential;Physica A: Statistical Mechanics and its Applications;2024-09

2. Memory-induced absolute negative mobility;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-07-01

3. Memory Corrections to Markovian Langevin Dynamics;Entropy;2024-05-16

4. Effective mass approach to memory in non-Markovian systems;Physical Review E;2024-04-08

5. Roughness induced current reversal in fractional hydrodynamic memory;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3