Author:
Alharbey R. A.,Mondal Hiranmoy,Behl Ramandeep
Abstract
The boundary layer micropolar fluid over a horizontal plate embedded in a non-Darcy porous medium is investigated in this study. This paper is solely focused on contributions oriented towards the application of micropolar fluid flow over a stretching sheet. The prime equations are renewed to ordinary differential equations with the assistance of similarity transformation; they are then subsequently solved numerically using the spectral quasi-linearization method (SQLM) for direct Taylor series expansions that can be applied to non-linear terms in order to linearize them. The spectral collocation approach is then applied to solve the resulting linearized system of equations. The paper acquires realistic numerical explanations for rapidly convergent solutions using the spectral quasi-linearization method. Convergence of the numerical solutions was monitored using the residual error of the PDEs. The validity of our model is established using error analysis. The impact of different geometric parameters on angular velocity, temperature, and entropy generation numbers are presented in graphs. The results show that the entropy generation number decelerates with an increase in Reynolds number and Brinkmann number. The velocity profile increases with the increasing material parameter. The results indicate that the fluid angular velocity decreases throughout the boundary layer for increasing values of the material parameter.
Funder
Deanship of Scientific Research (DSR)
Subject
General Physics and Astronomy
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献