Magnetohydrodynamics Williamson Nanofluid Flow over an Exponentially Stretching Surface with a Chemical Reaction and Thermal Radiation

Author:

Muzara Hillary1,Shateyi Stanford2ORCID

Affiliation:

1. Department of Mathematics and Computational Sciences, University of Zimbabwe, Mt. Pleasant, Harare P.O. Box MP167, Zimbabwe

2. Department of Mathematical and Computational Sciences, University of Venda, P. Bag X5050, Thohoyandou 0950, South Africa

Abstract

Presented in this current study is the numerical analysis of magnetohydrodynamics Williamson nanofluid flow over an exponentially stretching surface. The most important aspect of the investigation is that the effects of the magnetic field, chemical reaction and thermal radiation in the fluid flow are taken into account. The partial differential equations governing the present Williamson nanofluid flow problem were observed to be highly nonlinear and coupled. Suitable similarity transformations were used to transmute the coupled system of nonlinear partial differential equations governing the fluid flow into a linear system. The linear system was solved numerically using the spectral quasi-linearization method. The MATLAB bvp4c numerical technique and a comparison with existing results for the skin friction coefficient were used to confirm the appropriateness of the method in solving the current problem. The influence of some pertinent physical parameters on the fluid’s velocity, temperature and concentration profiles were displayed graphically. The effects of all the physical parameters on the skin friction coefficient, Nusselt number and Sherwood number were portrayed in a tabular form. It was noted that enhancing the thermal radiation parameter reduces the fluid’s temperature, Nusselt number and the skin friction coefficient, while the Sherwood number is improved.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference47 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3