Two-Tier Cooperation Based High-Reliable and Lightweight Forwarding Strategy in Heterogeneous WBAN

Author:

Li Jirui1ORCID,Xiao Junsheng1,Yuan Jie2

Affiliation:

1. School of Information Technology, Henan University of Chinese Medicine, Zhengzhou 450046, China

2. Key Laboratory of Trustworthy Distributed Computing and Service, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

Due to the limited and difficult access to sensor energy, energy conservation has always been an important issue in wireless body area network (WBAN). How to make full use of the limited energy of heterogeneous sensors in WBAN to achieve lightweight and high-reliable data transmission has also become key to the sustainable development of telemedicine services. This paper proposes a two-tier cooperation based high-reliable and lightweight forwarding (TTCF) mechanism via minimizing the amount of transmitted data and optimizing forwarding performance, so as to improve the efficiency and reliability of WBAN and reduce system energy consumption. In TTCF, an adaptive semi-tensor product compressed sensing evolution (STPCSE) model is first constructed to minimize the amount of data to be transmitted and extend the lifetime of sensors. Then, the important factors closely related to the energy consumption of human body sensors, including sampling frequency, residual energy and their importance in the network, are analyzed and redefined, and a high-reliable and lightweight forwarding model based on a multi-factor dynamic fusion is built. Finally, the performance and energy-saving effect of TTCF in a dynamic WBAN environment are compared and analyzed. Simulation results show that the system with our TTCF always performs the best in terms of data reconstruct accuracy, cumulative delivery rata, energy consumption and throughput. For example, its cumulative delivery rate is about 12% and 20.8% higher than that of UC-MPRP and CRPBA, and its residual energy and throughput are 1.22 times and 1.41 times, 1.35 times and 1.6 times of the latter two, respectively.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3