A Review of Applications of Artificial Intelligence in Heavy Duty Trucks

Author:

Katreddi SasankaORCID,Kasani Sujan,Thiruvengadam Arvind

Abstract

Due to the increasing use of automobiles, the transportation industry is facing challenges of increased emissions, driver safety concerns, travel demand, etc. Hence, automotive industries are manufacturing vehicles that produce fewer emissions, are fuel-efficient, and provide safety for drivers. Artificial intelligence has taken a major leap recently and provides unprecedented opportunities to enhance performance, including in the automotive and transportation sectors. Artificial intelligence shows promising results in the trucking industry for increasing productivity, sustainability, reliability, and safety. Compared to passenger vehicles, heavy-duty vehicles present challenges due to their larger dimensions/weight and require attention to dynamics during operation. Data collected from vehicles can be used for emission and fuel consumption testing, as the drive cycle data represent real-world operating characteristics based on heavy-duty vehicles and their vocational use. Understanding the activity profiles of heavy-duty vehicles is important for freight companies to meet fuel consumption and emission standards, prevent unwanted downtime, and ensure the safety of drivers. Utilizing the large amount of data being collected these days and advanced computational methods such as artificial intelligence can help obtain insights in less time without on-road testing. However, the availability of data and the ability to apply data analysis/machine learning methods on heavy-duty vehicles have room for improvement in areas such as autonomous trucks, connected vehicles, predictive maintenance, fault diagnosis, etc. This paper presents a review of work on artificial intelligence, recent advancements, and research challenges in the trucking industry. Different applications of artificial intelligence in heavy-duty trucks, such as fuel consumption prediction, emissions estimation, self-driving technology, and predictive maintenance using various machine learning and deep learning methods, are discussed.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fatigue driving state detection for tanker truck drivers based on multi-feature fusion;Fourth International Conference on Smart City Engineering and Public Transportation (SCEPT 2024);2024-05-16

2. An Ensemble Deep Learning Model for Vehicular Engine Health Prediction;IEEE Access;2024

3. Ansae: An Ai-Native Saas Manufacturing and Management Platform Based on Llm and Multi-Agent Clustering System;2024

4. Accommodating Uncertainty in Forecast Generation of Artificial Intelligence Tools in Construction Projects;2023 IEEE 5th International Conference on Architecture, Construction, Environment and Hydraulics (ICACEH);2023-12-01

5. Generative AI in the Manufacturing Process: Theoretical Considerations;Engineering Management in Production and Services;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3