A Novel Horse Racing Algorithm Based MPPT Control for Standalone PV Power Systems

Author:

Ngo SyORCID,Chiu Chian-Song,Ngo Thanh-Dong

Abstract

This paper proposes a novel maximum power point tracking (MPPT) method inspired by the horse racing game for standalone photovoltaic (PV) power systems, such that the highest PV power conversion efficiency is obtained. From the horse racing game rules, we develop the horse racing algorithm (HRA) with the qualifying stage and final ranking stage. The MPP can be searched even if there exist multiple local MPPs for the PV power system. Moreover, from the proposed horse racing algorithm, the calculation is reduced, so that the transient searching points are less than traditional methods, i.e., the transient oscillation is less during the MPPT control. Therefore, the HRA based MPPT method avoids local maximum power traps and achieves the MPP quickly even if considering partial shading influence and varying environment for PV panels. Evidence of the accuracy and effectiveness of the proposed HRA method is exhibited by simulation results. These results are also compared with typical particle swarm optimization (PSO) and grey wolf optimization (GWO) methods and shown better convergence time as well as transient oscillation. Within the range from 0.34 to 0.58 s, the proposed method has effectively tracked the global maximum power point, which is from 0.42 to 0.48 s faster than the conventional PSO technique and from 0.36 to 0.74 s faster than the GWO method. Finally, the obtained findings proved the effectiveness and superiority of the proposed HRA technique through experimental results. The fast response in terms of good transient oscillation and global power tracking time of the proposed method are from 0.40 to 1.0 s, while the PSO and GWO methods are from 1.56 to 1.6 s and from 1.9 to 2.2 s, respectively.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3