Multiscale Decision-Making for Enterprise-Wide Operations Incorporating Clustering of High-Dimensional Attributes and Big Data Analytics: Applications to Energy Hub

Author:

Alhameli FalahORCID,Ahmadian Ali,Elkamel Ali

Abstract

In modern systems, there is a tendency to model issues more accurately with low computational cost and considering multiscale decision-making which increases the complexity of the optimization. Therefore, it is necessary to develop tools to cope with these new challenges. Supply chain management of enterprise-wide operations usually involves three decision levels: strategic, tactical, and operational. These decision levels depend on each other involving different time scales. Accordingly, their integration usually leads to multiscale models that are computationally intractable. In this work, the aim is to develop novel clustering methods with multiple attributes to tackle the integrated problem. As a result, a clustering structure is proposed in the form of a mixed integer non-linear program (MINLP) later converted into a mixed integer linear program (MILP) for clustering shape-based time series data with multiple attributes through a multi-objective optimization approach (since different attributes have different scales or units) and minimize the computational complexity of multiscale decision problems. The results show that normal clustering is closer to the optimal case (full-scale model) compared with sequence clustering. Additionally, it provides improved solution quality due to flexibility in terms of sequence restrictions. The developed clustering algorithms can work with any two-dimensional datasets and simultaneous demand patterns. The most suitable applications of the clustering algorithms are long-term planning and integrated scheduling and planning problems. To show the performance of the proposed method, it is investigated on an energy hub as a case study, the results show a significant reduction in computational cost with accuracies ranging from 95.8% to 98.3%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3