Optimizing extreme manufacturing framework: a secure and efficient 3D printing integration framework

Author:

G Moulika,Palanisamy PonnusamyORCID

Abstract

Abstract This study presents a comprehensive framework for extended manufacturing with integrated 3D printing technologies, exemplifying a paradigm shift in the manufacturing landscape. The Digital Thread Integration establishes a dynamic foundation, enabling real-time collaboration and data flow throughout the product lifecycle. Leveraging advanced AI-driven optimization, Digital Design Platforms streamline designs, processing 1,000 iterations per hour, and recommending materials based on component requirements. On-Demand Manufacturing Hubs strategically placed globally achieve substantial reductions in lead times (48 h) and material waste (15%). The Cybersecurity Infrastructure ensures the sanctity of the digital environment, employing secure communication protocols and an Intrusion Detection System (IDS) responding to threats in milliseconds. The Data Analytics Hub contributes to continual improvement by analysing 100 GB of 3D printing data daily, generating 50 actionable insights weekly. User Interface and Accessibility initiatives empower the workforce through intuitive training modules and responsive help desks. In conclusion, this framework exemplifies secure, efficient, and data-driven extended manufacturing, positioning the industry at the forefront of technological advancement.

Publisher

IOP Publishing

Reference18 articles.

1. Multiscale decision-making for enterprise-wide operations incorporating clustering of high-dimensional attributes and big data analytics: applications to energy hub;Alhameli;Energies,2021

2. A devsecops-based assurance process for big data analytics;Anisetti,2022

3. Cybersecurity in industrial control systems:= Issues, technologies, and challenges;Asghar;Computer Networks,2019

4. Industry 4.0 and supply chain sustainability: framework and future research directions;Bag;Benchmarking: An International Journal,2021

5. Cyber security of smart manufacturing execution systems: a bibliometric analysis;Bahrami;AI-Enabled Threat Detection and Security Analysis for Industrial IoT,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3