Research on the Thermal Aging Characteristics of Crosslinked Polyethylene Cables Based on Polarization and Depolarization Current Measurement

Author:

Li Yamei1,Peng Zhaowei1,Xu Dangguo1,Huang Shiyang1,Gao Yanfeng1,Li Yuan2

Affiliation:

1. Electric Power Research Institute, State Grid Jibei Electric Power Co., Ltd., Beijing 100054, China

2. College of Electrical Engineering, Sichuan University, Chengdu 610065, China

Abstract

Although XLPE cables are widely used in power transmission and distribution systems, their insulating properties are susceptible to degradation due to thermal aging. In order to clarify the influence law of the thermal aging process on the structural and dielectric properties of XLPE cables, this paper investigates the thermal aging characteristics of XLPE cables by using polarization and depolarization current measurement. Results show that when the XLPE cable is aged at 140 °C, the crystallinity of the insulation layer appears to increase and then decrease. With the increase in aging time, micron-sized microvoids appear on the surface of the XLPE. At the same time, the DC conductivity and 0.1 Hz dielectric loss factor of the insulating layer increase with the aging time. The average DC conductivity increased from 2.26 × 10−16 S/m for new cables to 4.47 × 10−16 S/m after aging for 432 h, while the dielectric loss increased from 0.11% to 0.42%. The polarization characteristics of thermal-aged cables were further analyzed using the extended Debye model. Results indicate that the time constant of the third branch of the model increased significantly with increasing aging time. A correspondence between this parameter and the thermal aging time of the cable was established. Thermal aging can damage the crystalline structure of XLPE, so that the number of interfaces between the crystalline and amorphous regions of the material increases, resulting in structural damages and a decline in the dielectric properties of the cable insulation.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3