Affiliation:
1. Research Institute of Rubber and Plastic Materials Science and Technology, Jiangsu Shangshang Cable Group Changzhou P. R. China
2. College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials Soochow University Suzhou P. R. China
Abstract
AbstractThe crystallinity of polyethylene has been extensively studied, but in situ experiments designed to investigate the crystallization of PE and XLPE have hardly been discussed. In this work, the crystallization behavior of PE and XLPE was investigated by designing in situ crystallization observation experiments. We have compared the crystallinity, crosslinking, viscosity properties, and gas byproducts of different XLPE insulating materials. COMSOL simulations demonstrate that the DTAP and DTBP crosslinker initiated crosslinks have better insulating properties and cable stability than the DTBC and DTBTMC crosslinkers. The formation of an insulation layer initiated by the DTAP crosslinker is beneficial for improving the breakdown strength, processing performance, and stable operation of cables. Our work is of great significance for understanding the crystallinity of XLPE and determining the correct crosslinker.Highlights
In situ crystallization observation of PE and XLPE.
Simulation of ultra‐high voltage cables.
Finite element analysis.
Investigation of gas byproducts in XLPE.
Funder
National Natural Science Foundation of China
Subject
Materials Chemistry,Polymers and Plastics,General Chemistry,Materials Chemistry,Polymers and Plastics,General Chemistry