Regulating the structure of crosslinked polyethylene and its application in ultra‐high voltage cables

Author:

Sun Wu‐Ji12ORCID,Liu Xiong‐Jun1,Yuan Li‐Juan1,Xiao Han1,Lu Jian‐Mei2

Affiliation:

1. Research Institute of Rubber and Plastic Materials Science and Technology, Jiangsu Shangshang Cable Group Changzhou P. R. China

2. College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials Soochow University Suzhou P. R. China

Abstract

AbstractThe crystallinity of polyethylene has been extensively studied, but in situ experiments designed to investigate the crystallization of PE and XLPE have hardly been discussed. In this work, the crystallization behavior of PE and XLPE was investigated by designing in situ crystallization observation experiments. We have compared the crystallinity, crosslinking, viscosity properties, and gas byproducts of different XLPE insulating materials. COMSOL simulations demonstrate that the DTAP and DTBP crosslinker initiated crosslinks have better insulating properties and cable stability than the DTBC and DTBTMC crosslinkers. The formation of an insulation layer initiated by the DTAP crosslinker is beneficial for improving the breakdown strength, processing performance, and stable operation of cables. Our work is of great significance for understanding the crystallinity of XLPE and determining the correct crosslinker.Highlights In situ crystallization observation of PE and XLPE. Simulation of ultra‐high voltage cables. Finite element analysis. Investigation of gas byproducts in XLPE.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Materials Chemistry,Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3