Deriving Input Variables through Applied Machine Learning for Short-Term Electric Load Forecasting in Eskilstuna, Sweden

Author:

Netzell Pontus1ORCID,Kazmi Hussain2ORCID,Kyprianidis Konstantinos1ORCID

Affiliation:

1. Future Energy Center, Mälardalen University, 722 20 Västerås, Sweden

2. Department of Electrical Engineering, KU Leuven, 3001 Leuven, Belgium

Abstract

As the demand for electricity, electrification, and renewable energy rises, accurate forecasting and flexible energy management become imperative. Distribution network operators face capacity limits set by regional grids, risking economic penalties if exceeded. This study examined data-driven approaches of load forecasting to address these challenges on a city scale through a use case study of Eskilstuna, Sweden. Multiple Linear Regression was used to model electric load data, identifying key calendar and meteorological variables through a rolling origin validation process, using three years of historical data. Despite its low cost, Multiple Linear Regression outperforms the more expensive non-linear Light Gradient Boosting Machine, and both outperform the “weekly Naïve” benchmark with a relative Root Mean Square Errors of 32–34% and 39–40%, respectively. Best-practice hyperparameter settings were derived, and they emphasize frequent re-training, maximizing the training data size, and setting a lag size larger than or equal to the forecast horizon for improved accuracy. Combining both models into an ensemble could the enhance accuracy. This paper demonstrates that robust load forecasts can be achieved by leveraging domain knowledge and statistical analysis, utilizing readily available machine learning libraries. The methodology for achieving this is presented within the paper. These models have the potential for economic optimization and load-shifting strategies, offering valuable insights into sustainable energy management.

Funder

INDTECH

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3