A Near-Real-Time Flood Detection Method Based on Deep Learning and SAR Images

Author:

Wu Xuan123ORCID,Zhang Zhijie45,Xiong Shengqing5,Zhang Wanchang12ORCID,Tang Jiakui67ORCID,Li Zhenghao123,An Bangsheng123,Li Rui123

Affiliation:

1. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. School of Geography, Development and Environment, The University of Arizona, Tucson, AZ 85719, USA

5. Natural Resources Aerogeophysical and Remote Sensing Center of China Geological Survey, Beijing 100083, China

6. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China

7. Yanshan Earth Key Zone and Surface Flux Observation and Research Station, University of Chinese Academy of Sciences, Beijing 101408, China

Abstract

Owning to the nature of flood events, near-real-time flood detection and mapping is essential for disaster prevention, relief, and mitigation. In recent years, the rapid advancement of deep learning has brought endless possibilities to the field of flood detection. However, deep learning relies heavily on training samples and the availability of high-quality flood datasets is rather limited. The present study collected 16 flood events in the Yangtze River Basin and divided them into three categories for different purpose: training, testing, and application. An efficient methodology of dataset-generation for training, testing, and application was proposed. Eight flood events were used to generate strong label datasets with 5296 tiles as flood training samples along with two testing datasets. The performances of several classic convolutional neural network models were evaluated with those obtained datasets, and the results suggested that the efficiencies and accuracies of convolutional neural network models were obviously higher than that of the threshold method. The effects of VH polarization, VV polarization, and the involvement of auxiliary DEM on flood detection were investigated, which indicated that VH polarization was more conducive to flood detection, while the involvement of DEM has a limited effect on flood detection in the Yangtze River Basin. Convolutional neural network trained by strong datasets were used in near-real-time flood detection and mapping for the remaining eight flood events, and weak label datasets were generated to expand the flood training samples to evaluate the possible effects on deep learning models in terms of flood detection and mapping. The experiments obtained conclusions consistent with those previously made on experiments with strong datasets.

Funder

Ministry of Water Resources

Key R & D and Transformation Program of Qinghai Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3