Terrain Shadow Interference Reduction for Water Surface Extraction in the Hindu Kush Himalaya Using a Transformer-Based Network

Author:

Yan Xiangbing12ORCID,Song Jia13ORCID

Affiliation:

1. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

2. School of Resource and Environmental Science, Wuhan University, Wuhan 430072, China

3. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China

Abstract

Water is the basis for human survival and growth, and it holds great importance for ecological and environmental protection. The Hindu Kush Himalaya (HKH) is known as the “Water Tower of Asia”, where water influences changes in the global water cycle and ecosystem. It is thus very important to efficiently measure the status of water in this region and to monitor its changes; with the development of satellite-borne sensors, water surface extraction based on remote sensing images has become an important method through which to do so, and one of the most advanced and accurate methods for water surface extraction involves the use of deep learning networks. We designed a network based on the state-of-the-art Vision Transformer to automatically extract the water surface in the HKH region; however, in this region, terrain shadows are often misclassified as water surfaces during extraction due to their spectral similarity. Therefore, we adjusted the training dataset in different ways to improve the accuracy of water surface extraction and explored whether these methods help to reduce the interference of terrain shadows. Our experimental results show that, based on the designed network, adding terrain shadow samples can significantly enhance the accuracy of water surface extraction in high mountainous areas, such as the HKH region, while adding terrain data does not reduce the interference from terrain shadows. We obtained the water surface extraction results in the HKH region in 2021, with the network and training datasets containing both water surface and terrain shadows. By comparing these results with the data products of Global Surface Water, it was shown that our water surface extraction results are highly accurate and the extracted water surface boundaries are finer, which strongly confirmed the applicability and advantages of the proposed water surface extraction approach in a wide range of complex surface environments.

Funder

The National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3