Automatic Detection of Floating Macroalgae via Adaptive Thresholding Using Sentinel-2 Satellite Data with 10 m Spatial Resolution

Author:

Muzhoffar Dimas Angga Fakhri1ORCID,Sakuno Yuji1ORCID,Taniguchi Naokazu1,Hamada Kunihiro1,Shimabukuro Hiromori2,Hori Masakazu3

Affiliation:

1. Graduate School of Advanced Science and Technology, Hiroshima University, Higashi-Hiroshima 739-8527, Japan

2. Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Hatsukaichi 739-0452, Japan

3. Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Yokohama 236-8648, Japan

Abstract

Extensive floating macroalgae have drifted from the East China Sea to Japan’s offshore area, and field observation cannot sufficiently grasp their extensive spatial and temporal changes. High-spatial-resolution satellite data, which contain multiple spectral bands, have advanced remote sensing analysis. Several indexes for recognizing vegetation in satellite images, namely, the normalized difference vegetation index (NDVI), normalized difference water index (NDWI), and floating algae index (FAI), are useful for detecting floating macroalgae. Thresholds are defined to separate macroalgae-containing image pixels from other pixels, and adaptive thresholding increases the reliability of image segmentation. This study proposes adaptive thresholding using Sentinel-2 satellite data with a 10 m spatial resolution. We compare the abilities of Otsu’s, exclusion, and standard deviation methods to define the floating macroalgae detection thresholds of NDVI, NDWI, and FAI images. This comparison determines the most advantageous method for the automatic detection of floating macroalgae. Finally, the spatial coverage of floating macroalgae and the reproducible combination needed for the automatic detection of floating macroalgae in Kagoshima, Japan, are examined.

Funder

Agriculture, Forestry, and Fisheries Research Council, Ministry of Agriculture, Forestry and Fisheries of Japan

JSPS KAKENHI

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference30 articles.

1. Distribution and characteristics of seaweed/seagrass community in Kagoshima Bay, Kagoshima Prefecture, Japan;Tanaka;Nippon Suisan Gakkaishi,2013

2. Spatial distributions of floating seaweeds in the East China Sea from late winter to early spring;Mizuno;J. Appl. Phycol.,2014

3. Kagoshima Perfecture (2022, September 28). Mojako Jōhō [Yellowtail Larva Information]. Available online: https://suigi.jp/mojako/.

4. (2022, September 28). EO Browser. Available online: https://apps.sentinel-hub.com/eo-browser/.

5. Schowengerdt, R.A. (2006). Remote Sensing: Models and Methods for Image Processing, Elsevier.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic Detection of Floating Ulva prolifera Bloom from Optical Satellite Imagery;Journal of Marine Science and Engineering;2024-04-19

2. A Review of Monitoring Ecohydrological Events Using Remote Sensing;Advances in Environmental Engineering and Green Technologies;2023-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3