Multi-Scale Ship Detection Algorithm Based on YOLOv7 for Complex Scene SAR Images

Author:

Chen Zhuo1,Liu Chang12,Filaretov V.2,Yukhimets D.2

Affiliation:

1. College of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China

2. Robotic Laboratory, Institute of Automatics and Control Process of Russian Academy of Sciences, 5, Radio St., 690041 Vladivostok, Russia

Abstract

Recently, deep learning techniques have been extensively used to detect ships in synthetic aperture radar (SAR) images. The majority of modern algorithms can achieve successful ship detection outcomes when working with multiple-scale ships on a large sea surface. However, there are still issues, such as missed detection and incorrect identification when performing multi-scale ship object detection operations in SAR images of complex scenes. To solve these problems, this paper proposes a complex scenes multi-scale ship detection model, according to YOLOv7, called CSD-YOLO. First, this paper suggests an SAS-FPN module that combines atrous spatial pyramid pooling and shuffle attention, allowing the model to focus on important information and ignore irrelevant information, reduce the feature loss of small ships, and simultaneously fuse the feature maps of ship targets on various SAR image scales, thereby improving detection accuracy and the model’s capacity to detect objects at several scales. The model’s optimization is then improved with the aid of the SIoU loss function. Finally, thorough tests on the HRSID and SSDD datasets are presented to support our methodology. CSD-YOLO achieves better detection performance than the baseline YOLOv7, with a 98.01% detection accuracy, a 96.18% recall, and a mean average precision (mAP) of 98.60% on SSDD. In addition, in comparative experiments with other deep learning-based methods, in terms of overall performance, CSD-YOLO still performs better.

Funder

2021 project of Guangdong Province Science and Technology Special Funds (“College Special Project + Task List”) Competitive Distribution

project of Enhancing School with Innovation of Guangdong Ocean University

program for scientific research start-up funds of Guangdong Ocean University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3