A Comparison of Different Models of Glycemia Dynamics for Improved Type 1 Diabetes Mellitus Management with Advanced Intelligent Analysis in an Internet of Things Context

Author:

Rodríguez-Rodríguez IgnacioORCID,Rodríguez José-VíctorORCID,Molina-García-Pardo José-MaríaORCID,Zamora-Izquierdo Miguel-ÁngelORCID,Martínez-Inglés María-TeresaORCID

Abstract

The metabolic disease Type 1 Diabetes Mellitus (DM1) is caused by a reduction in the production of pancreatic insulin, which causes chronic hyperglycemia. Patients with DM1 are required to perform multiple blood glucose measurements on a daily basis to monitor their blood glucose dynamics through the use of capillary glucometers. In more recent times, technological developments have led to the development of cutting-edge biosensors and Continuous Glucose Monitoring (CGM) systems that can monitor patients’ blood glucose levels on a real-time basis. This offers medical providers access to glucose oscillations modeling interventions that can enhance DM1 treatment and management approaches through the use of novel disruptive technologies, such as Cloud Computing (CC), big data, Intelligent Data Analysis (IDA) and the Internet of Things (IoT). This work applies some advanced modeling techniques to a complete data set of glycemia-related biomedical features—obtained through an extensive, passive monitoring campaign undertaken with 25 DM1 patients under real-world conditions—in order to model glucose level dynamics through the proper identification of patterns. Hereby, four methods, which are run through CC due to the high volume of data collected, are applied and compared within an IoT context. The results show that Bayesian Regularized Neural Networks (BRNN) offer the best performance (0.83 R2) with a reduced Root Median Squared Error (RMSE) of 14.03 mg/dL.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3