Abstract
The regularities of the processes and characteristics of convection in a sessile drop on a hot wall after the second drop fall are investigated experimentally. The movement of a particle on a drop surface under the action of capillary force and liquid convection is considered. The particle motion is realized by a complex curvilinear trajectory. The fall of droplet with and without surfactant additives is considered. Estimates of the influence of the thermal factor (thermocapillary forces) and the dynamic factor (inertia forces) on convection are given. The scientific novelty of the work is the investigation of the simultaneous influence of several factors that is carried out for the first time. It is shown that in the presence of a temperature jump for the time of about 0.01–0.1 s thermocapillary convection leads to a 7–8 times increase in the mass transfer rate in drop. The relative influence of inertial forces is found to be no more than 5%. The fall of drops with surfactant additives (water + surfactant) reduces the velocity jump inside the sessile drop 2–4 times, compared with the water drop without surfactant. Thermocapillary convection leads to the formation of a stable vortex in the drop. The dynamic factor and surfactant additive lead to the vortex breakdown into many small vortices, which results in the suppression of convection. The obtained results are of great scientific and practical importance for heat transfer enhancement and for the control of heating and evaporation rates.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献