Reversible Circuit Synthesis Time Reduction Based on Subtree-Circuit Mapping

Author:

Hawash Amjad,Awad Ahmed,Abdalhaq BakerORCID

Abstract

Several works have been conducted regarding the reduction of the energy consumption in electrical circuits. Reversible circuit synthesis is considered to be one of the major efforts at reducing the amount of power consumption. The field of reversible circuit synthesis uses a large number of proposed algorithms to minimize the overall cost of circuits synthesis (represented in the line number and quantum cost), with minimal concern paid for synthesis time. However, because of the iterative nature of the synthesis optimization algorithms, synthesis time cannot be neglected as a parameter which needs to be tackled, especially for large-scale circuits which need to be realized by cascades of reversible gates. Reducing the synthesis cost can be achieved by Binary Decision Diagrams (BDDs), which are considered to be a step forward in this field. Nevertheless, the mapping of each BDD node into a cascade of reversible gates during the synthesis process is time-consuming. In this work, we implement the idea of the subtree-based mapping of BDD nodes to reversible gates instead of the classical nodal-based algorithm to effectively reduce the entire reversible circuit synthesis time. Considering Depth-First Search (DFS), we convert an entire BDD subtree in one step into a cascade of reversible gates. A look-up table for all possible combinations of subtrees and their corresponding reversible gates has been constructed, in which a hash key is used to directly access subtrees during the mapping process. This table is constructed as a result of a comprehensive study of all possible BDD subtrees and considered as a reference during the conversion process. The conducted experimental tests show a significant synthesis time reduction (around 95% on average), preserving the correctness of the algorithm in generating a circuit realizing the required Boolean function.

Funder

An-Najah National University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3