Abstract
The critical task of recognizing human–object interactions (HOI) finds its application in the domains of surveillance, security, healthcare, assisted living, rehabilitation, sports, and online learning. This has led to the development of various HOI recognition systems in the recent past. Thus, the purpose of this study is to develop a novel graph-based solution for this purpose. In particular, the proposed system takes sequential data as input and recognizes the HOI interaction being performed in it. That is, first of all, the system pre-processes the input data by adjusting the contrast and smoothing the incoming image frames. Then, it locates the human and object through image segmentation. Based on this, 12 key body parts are identified from the extracted human silhouette through a graph-based image skeletonization technique called image foresting transform (IFT). Then, three types of features are extracted: full-body feature, point-based features, and scene features. The next step involves optimizing the different features using isometric mapping (ISOMAP). Lastly, the optimized feature vector is fed to a graph convolution network (GCN) which performs the HOI classification. The performance of the proposed system was validated using three benchmark datasets, namely, Olympic Sports, MSR Daily Activity 3D, and D3D-HOI. The results showed that this model outperforms the existing state-of-the-art models by achieving a mean accuracy of 94.1% with the Olympic Sports, 93.2% with the MSR Daily Activity 3D, and 89.6% with the D3D-HOI datasets.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献