Ambient Assisted Living: Scoping Review of Artificial Intelligence Models, Domains, Technology, and Concerns

Author:

Jovanovic MladjanORCID,Mitrov GoranORCID,Zdravevski EftimORCID,Lameski PetreORCID,Colantonio SaraORCID,Kampel MartinORCID,Tellioglu HildaORCID,Florez-Revuelta FranciscoORCID

Abstract

Background Ambient assisted living (AAL) is a common name for various artificial intelligence (AI)—infused applications and platforms that support their users in need in multiple activities, from health to daily living. These systems use different approaches to learn about their users and make automated decisions, known as AI models, for personalizing their services and increasing outcomes. Given the numerous systems developed and deployed for people with different needs, health conditions, and dispositions toward the technology, it is critical to obtain clear and comprehensive insights concerning AI models used, along with their domains, technology, and concerns, to identify promising directions for future work. Objective This study aimed to provide a scoping review of the literature on AI models in AAL. In particular, we analyzed specific AI models used in AАL systems, the target domains of the models, the technology using the models, and the major concerns from the end-user perspective. Our goal was to consolidate research on this topic and inform end users, health care professionals and providers, researchers, and practitioners in developing, deploying, and evaluating future intelligent AAL systems. Methods This study was conducted as a scoping review to identify, analyze, and extract the relevant literature. It used a natural language processing toolkit to retrieve the article corpus for an efficient and comprehensive automated literature search. Relevant articles were then extracted from the corpus and analyzed manually. This review included 5 digital libraries: IEEE, PubMed, Springer, Elsevier, and MDPI. Results We included a total of 108 articles. The annual distribution of relevant articles showed a growing trend for all categories from January 2010 to July 2022. The AI models mainly used unsupervised and semisupervised approaches. The leading models are deep learning, natural language processing, instance-based learning, and clustering. Activity assistance and recognition were the most common target domains of the models. Ambient sensing, mobile technology, and robotic devices mainly implemented the models. Older adults were the primary beneficiaries, followed by patients and frail persons of various ages. Availability was a top beneficiary concern. Conclusions This study presents the analytical evidence of AI models in AAL and their domains, technologies, beneficiaries, and concerns. Future research on intelligent AAL should involve health care professionals and caregivers as designers and users, comply with health-related regulations, improve transparency and privacy, integrate with health care technological infrastructure, explain their decisions to the users, and establish evaluation metrics and design guidelines. Trial Registration PROSPERO (International Prospective Register of Systematic Reviews) CRD42022347590; https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022347590

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Reference157 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3