Machine Learning Techniques in Structural Wind Engineering: A State-of-the-Art Review

Author:

Mostafa Karim,Zisis IoannisORCID,Moustafa Mohamed A.ORCID

Abstract

Machine learning (ML) techniques, which are a subset of artificial intelligence (AI), have played a crucial role across a wide spectrum of disciplines, including engineering, over the last decades. The promise of using ML is due to its ability to learn from given data, identify patterns, and accordingly make decisions or predictions without being specifically programmed to do so. This paper provides a comprehensive state-of-the-art review of the implementation of ML techniques in the structural wind engineering domain and presents the most promising methods and applications in this field, such as regression trees, random forest, neural networks, etc. The existing literature was reviewed and categorized into three main traits: (1) prediction of wind-induced pressure/velocities on different structures using data from experimental studies, (2) integration of computational fluid dynamics (CFD) models with ML models for wind load prediction, and (3) assessment of the aeroelastic response of structures, such as buildings and bridges, using ML. Overall, the review identified that some of the examined studies show satisfactory and promising results in predicting wind load and aeroelastic responses while others showed less conservative results compared to the experimental data. The review demonstrates that the artificial neural network (ANN) is the most powerful tool that is widely used in wind engineering applications, but the paper still identifies other powerful ML models as well for prospective operations and future research.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3