Surrogate modeling for aerodynamic static instability of central-slotted box decks using machine learning approaches

Author:

Elhassan Mohammed Elhassan Omer1ORCID,Zhu Le-Dong123,Alhaddad Wael4,Tan Zhongxu12

Affiliation:

1. Department of Bridge Engineering, Tongji University, Shanghai, China

2. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China

3. Key Laboratory of Transport Industry of Bridge Wind Resistance Technology, Tongji University, Shanghai, China

4. Department of Structural Engineering, Tongji University, Shanghai, China

Abstract

Studies on aerodynamic controls of central-slotted box decks primarily focused on mitigating vortex-induced vibrations (VIV), as this type of deck typically performs well against flutter instability. However, as the span length increases, the critical wind speed of aerodynamic static instability ( U cr) might be lower than flutter critical wind speed. Thus, U cr will determine the overall aerodynamic performance of such bridges. Investigating this instability through wind tunnel testing methods and numerical simulation can be expensive and time-consuming. In this paper, surrogate models using machine learning approaches, specifically artificial neural network (ANN) and extreme gradient boosting (XGBoost), were developed and optimized for fast and reliable prediction for U cr based on wind tunnel tests and simulation data. The results demonstrated that the built surrogate models can predict U cr accurately. The parametric study results showed that the height ratio of wind fairing apex ( a/b), wind angle of attack ( α), and length of the main span ( L) have the most influence on the U cr compared with other parameters. Finally, based on the developed ANN surrogate model and the artificial bee colony (ABC) optimization algorithm, an optimized section was proposed to enhance the section’s performance against aerodynamic static instability.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3