Influence of Carbon Dioxide Curing on the Corrosion Resistance of Reinforced Cement Mortar under the External Erosion of NaCl Freeze–Thaw Cycle

Author:

Zhu Jing,Liu Shaotong,Song Lizhuo,Qu Zijian,Wang Hui

Abstract

Carbon dioxide (CO2)-cured concrete is a novel material that can effectively reduce CO2 emissions in the atmosphere. However, limited research has been found to investigate the corrosion behavior of CO2-cured reinforced concrete. In this paper, the corrosion resistance of reinforced cement mortar is investigated. The mortars were cured in CO2 for 1 day~28 days. Water–cement ratios (w/c) of 0.3, 0.4 and 0.5 were designed. The corrosion resistance of inner steel bars was researched by the methods of ultrasonic velocity, electrical parameters (AC electrical resistance, Tafel curve method and AC impedance spectroscopy). Moreover, scanning electron microscope was selected for observing the micro-morphology of CO2-curing mortar. X-ray diffraction spectrum was used to characterize components of steel bars’ passive films. The results show that CO2 can effectively increase electrical resistivity and ultrasonic velocity, thus improving the corrosion resistance of reinforced cement mortar. The enhancement of carbon dioxide curing increases with the increasing w/c. The mass-loss rate, the electrical resistivity and the decreasing rate of ultrasonic velocity increase with the increasing sodium chloride freeze–thaw cycles, indicating the continuous increase in the corrosion degree of reinforcement. The corrosion deterioration degree of steel bars decreases with the increasing CO2-curing time. Specimens with w/c of 0.3 and 0.4 show the highest and lowest corrosion deterioration resistances after sodium chloride freeze–thaw cycles. Microscopic characterization found that CO2 curing could increase the corrosion resistance of the inner steel bars by improving the compactness of the cement matrix. Moreover, the iron oxides on the surface of the passivation film decreased after CO2 curing.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3