The Influence of Assembly Unit of Fibers on the Mechanical and Long-Term Properties of Reactive Powder Concrete

Author:

Cai Zhangjie1,Ren Jie2,Shen Guangming3,Jin Changhong2,Gu Xingqing4,Cheng Wenjie1,Wang Hui5

Affiliation:

1. Civil Engineering Department, Yancheng Institute of Technology, Yancheng 224051, China

2. China Construction Infrastructure Co., Ltd., Beijing 100029, China

3. Jiuzhou Engineering Design Co., Ltd., Zhengzhou 451162, China

4. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

5. School of Civil Engineering and Geographic Environment, Ningbo University, Ningbo 315000, China

Abstract

The corrosion of concrete structures by chloride salt is very significant in coastal environments. In order to improve the durability of marine concrete structures, cement-based materials with high durability need to be developed. In this investigation, the influence of NaCl freeze–thaw cycles (FT-C) and NaCl dry-wet alternations (DW-A) on the flexural and compressive strengths of reactive powder concrete (RPC) with an assembly unit of basalt fibers and steel fibers is studied. Additionally, the mass loss rate, the relative dynamic modulus of elasticity (RDEM), the chloride ion migration coefficient (CMC) and the impact toughness are measured after the NaCl FT-C and DW-A action. Our findings show that the RDEM, mass loss, and mechanical strength loss of RPC are increased by the ascending NaCl FT-C and DW-A. Meanwhile, the RDEM and the impact toughness are decreased by the NaCl FT-C and DW-A. The RPC with 0.5% basalt fibers and 1.5% steel fibers by volume of RPC shows the optimum mechanical performance and resistance to NaCl FT-C and DW-A. However, RPC with 3% steel fibers shows the worst resistance to NaCl erosion. The maximum mass loss rates, RDEM, flexural strength loss rate, compressive strength loss rate, CMC and impact toughness of all specimens after 300 NaCl FT-C and 30 NaCl DW-A are 4.5%, 91.7%, 28.1%, 29.3%, 3.2 × 10−12 (m2/s) and 2471 J. Meanwhile, the corresponding minimum values are 1.62%, 83.2%, 20.4%, 15.7%, 1.1 × 10−12 (m2/s) and 625 J. The researching findings will provide an optimum mix ratio of RPC with an assembly unit of basalt fibers and steel fibers, which can be applied in the marine engineering environment.

Funder

Zhejiang Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3