Sigmoid Activation Implementation for Neural Networks Hardware Accelerators Based on Reconfigurable Computing Environments for Low-Power Intelligent Systems

Author:

Shatravin VladislavORCID,Shashev DmitriyORCID,Shidlovskiy StanislavORCID

Abstract

The remarkable results of applying machine learning algorithms to complex tasks are well known. They open wide opportunities in natural language processing, image recognition, and predictive analysis. However, their use in low-power intelligent systems is restricted because of high computational complexity and memory requirements. This group includes a wide variety of devices, from smartphones and Internet of Things (IoT)smart sensors to unmanned aerial vehicles (UAVs), self-driving cars, and nodes of Edge Computing systems. All of these devices have severe limitations to their weight and power consumption. To apply neural networks in these systems efficiently, specialized hardware accelerators are used. However, hardware implementation of some neural network operations is a challenging task. Sigmoid activation is popular in the classification problem and is a notable example of such a complex operation because it uses division and exponentiation. The paper proposes efficient implementations of this activation for dynamically reconfigurable accelerators. Reconfigurable computing environments (RCE) allow achieving reconfigurability of accelerators. The paper shows the advantages of applying such accelerators in low-power systems, proposes the centralized and distributed hardware implementations of the sigmoid, presents comparisons with the results of other studies, and describes application of the proposed approaches to other activation functions. Timing simulations of the developed Verilog modules show low delay (14–18.5 ns) with acceptable accuracy (average absolute error is 4 × 10−3).

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference37 articles.

1. Make Every Feature Binary: A 135B Parameter Sparse Neural Network for Massively Improved Search Relevance https://www.microsoft.com/en-us/research/blog/make-every-feature-binary-a-135b-parameter-sparse-neural-network-for-massively-improved-search-relevance/

2. Language Models are Few-Shot Learners;Brown;arXiv,2020

3. A Review of Deep Learning Methods and Applications for Unmanned Aerial Vehicles

4. Coordinated Batching and DVFS for DNN Inference on GPU Accelerators

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of On-time Student Graduation with Deep Learning Method;Journal of ICT Research and Applications;2024-06-27

2. Implementation of the SoftMax Activation for Reconfigurable Neural Network Hardware Accelerators;Applied Sciences;2023-11-28

3. FPGA-based Hardware Implementation of Fixed-point Division using Newton-Raphson Method;2023 IV International Conference on Neural Networks and Neurotechnologies (NeuroNT);2023-06-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3